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Abstract Turbulent natural convection and conduction in enclosures bounded by a massive wall is 
numerically studied. Two-dimensional equations of conservation of mass, momentum and energy, with 
the BoussirLesq approximation and using the K-~ model for turbulence, are solved using a finite difference 
method. Grids are generated in a nonuniform manner so that steep gradients near the wall regions are 
accounted :~'or as required. Various parameters were : Rayleigh number (from 108 to 1012), dimensionless 
conductivity of bounding wall (from 1 to 10), dimensionless wall width (from 0 to 0.5), enclosure aspect 
ratio (from 0.5 to 1) and the inclination angle (from 0 to 180°). The results are reduced in terms of the 
normalized Nusselt number as a function of the Rayleigh number, and other dimensionless parameters. 
The isotherms and streamlines are produced for various Rayleigh numbers and geometrical conditions. 
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INTRODUCTION 
Natural convection of fluid media in enclosures has 
received considerable attention over the past few dec- 
ades, largely due to a wide variety of applications, 
which include building technology, electronic boxes, 
solar collector technology, energy storage, nuclear 
reactor technology, etc. Comprehensive reviews of 
natural convection have been documented in the 
literature [1, 2]. Most of the previous studies has 
addressed laminar natural convection in cavities 
bounded with rigid walls with zero thickness subjected 
to various boundary conditions. In many appli- 
cations, the enclo,sure is bounded by walls with finite 
thickness and conductivity, which affect the natural 
convection in the ,enclosure. In addition, the Rayleigh 
number characterizing the flow mode often exceeds 
the critical values when the heat flux from the side 
wall is high, and the flow becomes turbulent. As a 
special case, enclosures with one bounding wall are 
encountered when simulating building components. 
For example, in direct gain passive solar systems, the 
dwelling is simulated as a two-dimensional enclosure 
having two vertical walls, one transparent and the 
other massive, which are bounded by two horizontal 
insulated boundaries. Heat transfer by a constant heat 
flux through the transparent vertical wall simulates 
solar radiation reception while an isothermal con- 
dition exists at the outer boundary of the massive 
wall, the adjacent building component at constant 
temperature. 

Heat transfer by natural convection in these systems 
constitutes a major study area. The heat transfer by 
laminar natural convection was studied earlier [3]. 

t Author to whom correspondence should be addressed. 

Heat transfer by turbulent natural convection for 
these problems is not available in the literature. A 
literature review on buoyancy driven turbulent flow 
in enclosures and turbulence models used follows. 

Various authors have studied the problem of the 
differentially heated square cavity. Markatos and 
Pericleous [4] obtained results for Rayleigh numbers 
ranging from 10 3 to 1016 : air was the fluid considered 
but the buoyancy term in the e equation was omitted 
and density was considered proportional to 1/T, 
avoiding the use of the Boussinesq approximation. 
They switched to turbulence at Ra > 10 6, invoked 
experimental observations to explain their decision 
and used their observation to derive Nu-Ra  cor- 
relations. Thompson et al. [5] investigated the solution 
for the double glazing problem and their results show 
the correct qualitative behaviour, namely a thin 
boundary layer and a stratified, almost stagnant core. 
They used a prescribed eddy viscosity turbulence 
model and x-E model with wall function, though little 
detail has been given concerning coefficients and 
functions used near the wall, and concluded that the 
former model could give a good insight with little 
cost. Henkes et al. [6] provided a comparison between 
various turbulence models and found Racr ~ 10 9 for 
air. They used geometric functions to refine the grid 
near the boundaries. No assumptions for the flow 
were made, except for the Boussinesq approximation. 

Other studies are concerned about forced con- 
vection in confined cavities [7, 8]. They used the stan- 
dard wall function in the x-~ model, which is appro- 
priate since the empirical constants are derived from 
forced flows. 

It appears from these studies and others [9, 10] that 
various problems arise in predicting internal buoy- 
ancy flow. Furthermore, studies in the literature are 
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NOMENCLATURE 

A aspect ratio, H/L e 
9 acceleration due to gravity [m s 2] 0 
h convection coefficient [W m 2 K-i]  t¢ 
H cavity height [m] 2 
k thermal conductivity [W m-~ K ~] /~ 
kr thermal conductivity ratio (kw/kO v 
L cavity width [m] p 
Nu Nusselt number (hL/k) ~r 
p dimensionless pressure ~0 
Pr Prandtl number, v/c~ ;( 
q heat flux [W m -z] ~t 
Ra Rayleigh number (#~qL4/kvcO 
S source term 
t time 
T temperature [K] 
u, v dimensional velocity in x and y 

direction 
W dimensionless wall thickness 
w width of the bounding wall [m] 
x, y Cartesian coordinates 
Ay increment in the y direction. 

Greek symbols 
thermal diffusivity [m 2 s -I] 

/~ thermal expansion of fluid [l/K] 
6 dimensionless distance from the wall 

(6*/L) 

dimensionless dissipation rate 
dimensionless temperature 
dimensionless kinetic energy 
dimensionless viscosity ratio (#w/#f) 
dynamic viscosity [kg m-1 s-~] 
kinematic viscosity [m 2 s-~] 
fluid density [kg m 3] 
correction factor in the x-e model 
angle of inclination, degrees 
empirical constant ; equation (10) 
stream function. 

Superscripts 
* dimensional variables 
+ distance from the wall ; equation (10). 

Subscripts 
e equivalent properties 
f fluid 
max maximum 
o reference value 
p first point near the wall 
t turbulent quantities 

tangential properties near the wall 
w wall. 

for the case of isothermal vertical boundaries with no 
wall thickness, i.e. no conduction heat transfer. 

Natural convection in enclosures has gained popu- 
larity in the past 10 years both due to the numerous 
applications derived from this configuration and for 
academic reasons, for example, bench mark solutions. 
Unfortunately, these studies are limited to the pre- 
diction of laminar flow in part because of the uncer- 
tainties related to the modelling of turbulence and the 
cost of such investigations. The present study models 
the turbulent natural convection in the cavity systems 
with a bounding massive wall. 

PROBLEM DESCRIPTION 

The system is shown in Fig. 1. It is an enclosure 
bounded by a massive wall with a finite conductivity 
on the right. A constant heat flux is imposed on the 
side opposing the massive wall to simulate solar radi- 
ation input and a constant temperature on the outer 
surface of the massive wall. The horizontal boundaries 
are adiabatic. It is assumed that the dimension in the 
z' direction is large enough and the end effects on the 
flow are negligible on the flow, i.e. the flow is two- 
dimensional. Experimental evidence suggests that this 
is, in fact, the case [11]. 

Fig. 1. Problem geometry and boundary conditions. 

MATHEMATICAL MODELLING 

The following non-dimensional variables are 
defined 

x* y* u* L v* L 
x = ~  y = ~  u =  V= 
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Table 1. Empirical constants used in the turbulence model 

C I C 2 Cp ~k fie Prt Z E 

1.45 1.95 0.09 1.00 1.30 1.00 0.41 9.00 
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p * + p g ( x * c o s t p + y * s i n t p ) + ~ p x *  T - T o  

= 0 = L q / k ~  P p(u/L) 2 

K* L 2 8*L 4 
K =  ~2 ~ - -  Off t = L z t  *. (1) 

The non-dimensional  form of the governing equations 
are obtained as follows (incompressible flow and 
Boussinesq appreximation) : 

Ou Ov 
a~ + ~yy = 0 (2) 

8u Ou Ou ~p 

~+"~x+~y ax 

+ 2 P r V  2 (#~u) + RaPrO cos ~o + Su (3) 

av av av ap 

at+u~+~- ay 
+ 2 P r V  z (Per) + RaPrO sin q) + S~ (4) 

80 80 O0 
+ ~  = k~v~(~oo)  (5)  +U~x  

&+u~z& & (~) --at + V ~ y  = P r Y  ~ x + & (6) 

N + u g ~  e + S ,  (7) 

where tt~ and ~ are defined as 

~c 2 Pr  
#~ = l + g t  = l + c u f f ~ r  e ~ = l + ~ t  = l + ~ t ~ r  t. 

(8)  

2 and k~ in equations (3)-(5) are both equal to 1 in 
the fluid region, and to 10 ~5 and kw/kr, respectively, in 
the solid region. 

The problem is governed by non-dimensional  par- 
ameters of Ra,  Pr, which are defined as 

g f lqL  4 V 
R a  - Pr  = - .  (9) 

vctkr o~ 

The boundary  conditions are the no-slip conditions 
on all the rigid wall surfaces, isothermal temperature 
on the outer surthce of the wall, constant  heat flux 
on the side opposing the wall and adiabatic on the 
horizontal walls. )Hence, the boundary  conditions for 
this problem are as shown in Fig. 1. 

In the near wall regions, steep nonlinear gradients 
and relatively low level of turbulence exist. To account 
for these, the wall function method is used [10]. Thus 
in the near wall region of the flow, where (5+ > 12, the 
constant  shear stress is calculated using the log-law 

Up : l l n  (E(su¢) (5 + (su~ (10) 

For  (5+ < 12, the laminar shear stress relation is used 

P\/FPr(5 up u~ = ( 1 1 )  

The recommended empirical constants used in the 
present model are summarized in Table 1 [12]. 

The law of the wall is incorporated in equations (3) 
and (4), where the convection terms are neglected and 
an effective viscosity is assumed according to equation 
(8) and 

Kp - ~ ~p - z(5' ( 12 )  

The same formulation applies also to the energy equa- 
tion in the near wall region where the temperature 
profile is described in terms of a wall function. 

The stream function is calculated from its definition 

a0 aq, u = - - - -  v = - -  (13) 
¢?y ax 

and by assuming ~ = 0 at the boundaries. 

VALIDATION OF THE CODE AND 
COMPUTATION 

The numerical method used to solve the system of 
equations (2)-(7) is the SIMPLER method []3]. The 
computer code based on the mathematical model 
above is validated for various cases. The results and 
the deviations from the bench mark solutions [14] 
are summarized in Table 2. The comparison was also 
made with the results of  Le Breton et al. [15] who 
used the same solution technique as in this study. The 
maximum deviations of the same parameters, i.e. ~ . . . .  

Umax, Vmax and Nuo (the average Nusselt number  along 
the vertical wall [14]), were 2.3, 1.4, 0.7 and 1.1%, 
respectively. A nonuniform grid size in both directions 
was used in this study with a minimum five control 
volumes in solid media in the x direction. The code 
with a nonuniform grid produced results, which com- 
pared a little better with the bench mark solutions. 

The code was also validated by solving the problem 
of a square cavity for R a  = 10 m. A comparison with 
Markatos and Pericleous [4] for the case of a square 
cavity showed that the agreement for various par- 
ameters was within + 10%. Comparisons with the 
works by Henkes et  al. [6], and Abadie and Schiestel 
[8] showed qualitative agreement. 

Independence of solution on the grid size was studied 
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Table 2. Results for Ra = 1 x 1 0  6 with grid size of 42 x 42, regular and irregular mesh 

This study 
Bench mark [14] De Vahl Davis [14] Regular mesh Error [%] Irregular mesh Error [%] 

~/max 16.75 17.613 17.531 4.66 17.025 1.64 
(x,y) 0.151, 0.547 0.151, 0.542 0.15, 0.55 0.66, 0.55 0.164, 0.547 
Um,x 64.63 67.49 66.79 3.34 65.47 1.30 

y 0.85 0.854 0.863 1.53 0.880 
Vm~x 219.36 206.32 223.49 1.88 221.09 0.79 
x 0.0379 0.0423 0.038 0.26 0.041 

Nuo 8.817 9.270 9.417 6.81 8.735 0.93 

for various cases, k r and W. For  instance, for 
Ra = 10 ~2, ~0 = 90 °, k~ = 10, w = 0.15, the grid sizes 
of  42 x 32, 42 x 42, 62 x 52 and 82 x 72 were tried. The 
results showed that grid independence was achieved 
above 42 x 42, showing acceptable differences in heat 
transfer (0.47%) and Om,x (3.76%). For  smaller aspect 
ratios, the grid independence was ensured using 
42 x 32 grid size. In any case, the Nusselt numbers for 
various kr showed similar trends as a function of  grid 
size, ensuring the observed conclusion of  grid inde- 
pendence. The results for A = 1 presented in this study 
were with 42 x 42 grid size ; for smaller aspect ratios, 
it was with 42 x 32. Grid refinement near the boundary 
was used to reduce the computing time. 

To control the convergence better, steady solutions 
were obtained from transient equations. The time step 
At was varied from 10 4 for low Rayleigh numbers 
to 10 5 for high Rayleigh numbers. The relaxation 
coefficient was maintained at 0.7. For  instance, for 
Ra = 101°, W =  0.15, ~0 = 90 °, kr = 10, using 4 2 x 4 2  
grid size, the solution was obtained after 4000 iter- 
ations requiring about  3 h on an IBM RS/6000-365 
work station. 

The convergence criterion was based on the cor- 
rected pressure field. When the correction terms were 
small enough so that no difference existed between the 
pressure field before and after correction, iterations 
were advanced in time until 

- -  i,jl < 10  4 ( 1 4 )  

where • stands for u, v and 0. 
In addition to the usual accuracy control, the accu- 

racy of  computations was controlled using the energy 
conservation within the system. 

RESULTS AND DISCUSSION 

Flow and temperature fields and heat transfer rates 
are examined for ranges of  the Rayleigh number and 
geometrical parameters of  the problem. In the present 
study, the following geometrical configurations were 
taken as base : q~ = 90 ° corresponding to vertical con- 
figuration, A = 1 (square enclosure), dimensionless 
wall thickness, W = 0.15, conductivity ratio, k~ = 10, 
Pr = 0.72 (air). Effects of  the dimensionless wall 
thickness W and conductivity ratio k~ were studied 
by varying them from 0 to 0.50 and from 1 to 10, 

respectively. The range of  the Rayleigh number,  
characterizing the natural convection, was from 108 
to 1012. The effects of  the enclosure aspect ratio, A, 
and of  the inclination, ~o, were also examined by vary- 
ing them from 1 to 0.5 and from 0 to 180 °, respectively. 

General observations 
The streamlines and isotherms in the domain of  

computat ion for kr = 10, W =  0.15, ~o = 90 ° and Ra 
from 108 to 10 ~2 are shown in Fig. 2(a)-(c),  and those 
for Ra = 10 ~, W = 0.15 and k r from 1 to 10 in Fig. 
3(a)-(c), respectively. The effect of  the dimensionless 
wall thickness is shown in Fig. 4(a) and (b) and Fig. 
3(c). 

The results in Fig. 2 are with k r = 10 ,  which cor- 
respond to the case with relatively high wall conduc- 
tivity. Hence, for Ra = 10 8, the temperature gradient 
within the solid wall is very small and the temperature 
at the internal surface is almost the same as the 
imposed uniform temperature at its outer boundary. 
For  Ra > 10 8, the isotherms show a considerable tem- 
perature gradient in the wall. For  increasing Ra, the 
isotherms show a stratified flow within the enclosure 
with steep gradients near the vertical boundaries. It is 
seen that, near the left boundary and at the inner 
surface of  the wall, a thermal boundary layer is 
formed. The streamlines in Fig. 2 show increasing 
convection with increasing Ra. For  all Ra, the stream- 
lines are quasi-symmetric, except for Ra = 10 8 for 
which they are a little skewed with increasing flow 
near the vertical boundaries and I~0m.xl is displaced 
towards the massive wall, at x = 0.755, y = 0.5. For  
increasing Ra, ]~kmax[ displaces to x = 0,803, y = 0.5 
for Ra = 10 t° and x = 0.830, y = 0.55 for Ra = 10 ~2. 

The effect of  the conductivity ratio, kT, on the heat 
transfer is shown in Fig. 3(a)-(c) for Ra = 10 j~ and 
W = 0.15. Although there is no discernible difference 
in streamlines when kr is varied from 1 to 10, while 
keeping the other parameters the same, I~kmax] show 
that the convection has increased with increasing kr. 
]~max[ values are 34.623, 50.231 and 63.630 for kr = I, 
5 and 10, respectively, with their positions remaining 
the same. Similar results for Ra = 10 j2 (not shown 
here) showed that the position of  [~bma x[ was displaced 
considerably towards the lower part of  the massive 
wall. These results are expected since the temperature 
of  the inner surface of  the wall increases with increas- 
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Fig. 2. Streamlines (on the left) and isotherms (on the right) in enclosure with A --- 1 and ¢p = 90 °, 
kr = 10, W = 0.15 and various Rayleigh numbers. (a) Ra = 108, ¢max = 19.98(0.755, 0.5), (b) Ra = 10 ~°, 

~bma x = 41.73(0.803, 0.5) and (c) Ra = 10 ~2, ~bmax = 96.70(0.83, 0.5). 

ing kr, which can be confirmed by examining the iso- 
therms. The results show a large temperature gradient 
for kr = 1 in Fig. 3(a), that becomes negligibly small 
as kr increases as in Fig. 3(b) and (c). As a result, the 
convection increases since the temperature differential 
becomes larger with increasing kr, supporting the 
observation made with the streamlines. 

Figures 4 and 3(c) show the effect of  the dimen- 
sionless wall thick:aess on the flow and temperature 
fields for R a =  1011 and k r =  10. The enclosure 
becomes more rectangular as W increases and the 
strength of  the convection is altered. For  kr = 10, the 
temperature gradiLent is small for W =  0.15: it 

increases with increasing wall thickness, thus affecting 
the inner surface temperature of  the wall. As a result, 
the convection increases. In fact, I~kmaxl are 63.630 for 
W = 0.15, 62.023 for W = 0.3 and 49.652 for W = 0.5 
and their position at the center of  the enclosure is 
displaced slightly upward with increasing IV. 

Heat  transfer 
Heat transfer as a function of  various parameters 

is evaluated and presented as the normalized Nusselt 
number as a function of  dimensionless parameters in 
Figs. 5 and 6. The normalized Nusselt number as a 
function of  the Rayleigh number with W and kr as 
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(c) 
Fig. 3. Streamlines (on the left) and isotherms (on the right) in enclosure with A = 1 and ~o = 90 °, Ra = 10 ~, 
W = 0.15 and various conductivities. (a) kr = 1, ~/max = 34.62(0.83, 0.5), (b) kr = 5, ~Omax = 50.23(0.819, 

0.5) and (c) kr = 10, Omax= 63.63(0.819, 0.5). 

parameters is shown in Fig. 5. Heat  transfer increases 
with increasing Rayleigh number, with decreasing wall 
thickness and with increasing wall conductivity. As 
observed earlier with Figs. 2 and 3, it is seen that, for 
kr = 1, the heat transfer is only little affected by the 
Rayleigh number. For  increasing kr, the convection 
becomes important  and the heat transfer is a strong 

function of  Ra.  With increasing wall thickness, it is 
seen that heat transfer by conduction becomes con- 
siderable as was the case observed in Fig. 4. 

The effect of  wall conductivity on the heat transfer 
is shown in Fig. 6. It is seen that N u  is an increasing 
function of  kr, weak at low Ra  and strong at high Ra  

with the same trend for different wall thicknesses. The 
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' - - ~  4 0 . 6 ~  
, - - ~  45.1 - 

, 0.062 / 
0.055- ' - - ,  [ i 

0 . 0 4 8 - - ,  ! 
Fig. 4. Streamlines (on the left) and isotherms (on the right) in enclosure with A = 1 and ~p = 90 °, 
Ra = 10  ]1, '/Or = 10 and various wall thicknesses. (a) W = 0.3, ~max = 62.02(0.669, 0.5) and (b) W = 0.5, 

~,,,x = 49.65(0.469, 0.5). 

W=0.15 
40 ............ ,N=0.30 

, ,  .................... 

10 ........................ . . / / , , - - I  

s ...... 5...~.., .......................... Z ...................... 

u 10 s 109 101o 1011 1012 

Ra 
Fig. 5. Normalized Nusselt number as a function of the 
Rayleigh number for various wall thicknesses and con- 

ductivities. 

reason is due to the fact tha t  convect ion is no t  affected 
beyond a wall conduct ivi ty  as the wall inner  surface 
tempera ture  becomes a lmost  the same as tha t  of  the 
wall outer  surface. This  was observed in Figs. 2 and  
3. In fact, for kr >t 5 and,  a t  low Rayleigh numbers ,  

i • s | • 

50 
Ra=lo' / 
Ra=lo" 

40 ........... Ra=101o / , , , "  
. . . . . .  Ra=lO 11 ~ / . - ' "  

30' - -Ra= lO '2~ , , ' . . .  ................. 

20 """" "" """  

10 [w=0.15 o .3~ .~  o.I  . . . . . .  , . . 

0 2 4 6 8 10 

kr 
Fig. 6. Normalized Nusselt number as a function of the 
wall conductivity for various Rayleigh numbers and wall 

thicknesses. 

there is only a small  t empera ture  gradient  in the 
massive wall, and,  as a result, the var ia t ion  of  Nu 
is less sensitive to kr. I t  should be noted  tha t  the 
dimensionless  conductivi t ies  for var ious cons t ruc t ion  
materials  are usually between 1 and  10, for well 
insulated par t i t ions  and  walls having  kr ~ 1. 
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Table 3. Nu, ~ . . . .  ~ m a x / A y  for various A, k~ and Ra 

k r = 5  K~=10 
.'4 N u  ~ m a ×  ~1 m a × / m Y  N u  I~max  ~ / m a x / A y  

Ra = 10 l° 0.5 21 .512  24.354 8 8 . 2 3 9  31 .523  2 7 . 6 1 5  110.460 
1.0 21.376 3 6 . 1 3 2  72.264 30 .866  4 3 . 0 1 1  86.022 

Ra = 10 It 0.5 25 .649  34 .222  123.993 41 .473  39.794 144.181 
1.0 25 .589  50 .231  100.462 40.922 63.630 127.260 

Effect o f  aspect ratio 
The effect of  the aspect ratio on the heat transfer is 

studied for the case o f R a  = 10 ~° and 10 ~, W =  0.15 
and kr = 1, 5, 10. The aspect ratio, A, was varied from 
0.5 to 1.0 with the former value corresponding to a 
rectangular enclosure twice the height, simulating an 
elongated enclosure. The results are presented in Fig. 
7 as Nu vs A. Generally, Nu increases with increasing 
kr at any A. This is expected in view of  the earlier 
observation made for Figs. 5 and 6. For  Ra = 10 j° 
and 10 ~, Fig. 7 shows that Nu is a slightly decreasing 
function of  A for all kr although less discernible for 
kr = I. To explain this phenomenon,  flow fields in 
various cases were examined. ~m,x values for 
Ra = 10 ~°, 10 j~ and kr = 5, 10 are presented in Table 
3. Normally,  Nu should be an increasing function of  

. . . .  since it is known that the natural convection 
increases with increasing strength of  circulation, Ore,x- 
The reason for the observed phenomenon is in fact 
due to a decreased flow rate. F rom the scale analysis 
of  laminar natural convection in enclosures, it is 
known that u ~ (a/H) Ra~/2, Nu ~ Ra~/4 ; therefore, 
Nu ~ u j/2 [16]. ~kmax/Ay being proport ional  to the aver- 
age flow rate or the average velocity, Nu ~ (gradient 
o f  I ] / )  I / 2 .  ( ~ / m a x - - ~ t y = 0 ) / A y - - ' ~  ~rnax/Ay are calculated 
and shown in Table 3. It is seen that ~max/Ay is a 
decreasing function of  A despite the fact that Cm.x is 
an increasing function of  it. The results show that this 
phenomenon is observed easier when k~ is high as for 

25 

20 

! - i • i - i - i - i 

40 . ~. / . . . . . .  Ra=lxlO ~° 

~r I0 _ _  Ra=lxlO ~ 35 .......... _...~___ .... . . . . . . . . . . . . . . . . . . . . . .  

30 k~=5 

5 ,i • i . i , t . t . | 

0.5 0.6 0.7 0.8 0.9 1.0 

A = H/L 

Fig. 7. Normalized Nusselt number as function of the en- 
closure aspect ratio for Ra = 10 ~° and 10 H, W = 0.15 and 

kr= 1,5,10. 

kr - -  5 and 10. For  high kr, the wall becomes more 
conductive and the temperature at the inner surface 
of  the wall becomes identical to that at its outer 
surface. For  this case, the heat transfer phenomenon 
resembles that in an enclosure with two sides without 
thermal resistance. It is known for the laminar case in 
such enclosures that Nu is a decreasing function of  the 
aspect ratio when the aspect ratio has an order of  
magnitude of  1. Also, as is the case here, the variation 
is Ra dependent [16]. 

Effect o f  inclination 
The effect of  the inclination angle is studied by 

varying ~0 from 0 to 180 °. The case of  Ra = 10 ~°, 
W = 0.15, kr = 10, and A = 0.5 and 1 is presented in 
Figs. 8-11. Flow and temperature fields for A = 1 and 
~o = 30, 45, 60, 75, 150 ° are shown in Fig. 8(a)-(e), 
and similar results for A = 0.5, ~0 = 30, 60, 120, 150 ° 
are shown in Fig. 9. The heat transfer, Nu, as function 
of  the inclination angle, ~o, and for two aspect ratios 
is presented in Fig. 10. Nu~oc along the side opposing 
the wall as a function of  ~o is shown in Fig. 11. 

The effect of  ~0 on the flow field in a square enclosure 
at various angles is seen in Fig. 8(a)-(e), where the 
position of  the enclosure for each inclination is shown 
in the middle, and Fig. 2(b) for ~o = 90 °. It is noted 
that ~o = 0 corresponds to the case where the heat 
flux is from the bot tom and 180 ° from the top (pure 
conduction). Starting from the horizontal case, 
streamlines are deformed in the direction of  gravity 
and as the wall with constant heat flux becomes pos- 
itioned at the top, the heat transfer becomes more 
dominated by conduction. Isotherms on the right- 
hand side clearly show this situation. Isotherms for 
tp = 150 °, for instance, show a dominant  conduction 
regime. I~kmax[ for increasing ~o from 30 to 150 ° in 
Fig. 8 were 237.826, 169.139, 109.633, 68.133, 12.155, 
showing the same trend. 

Similar results for A = 0.5 are presented in Fig. 
9(a)-(d). It is seen that, for ~o >~ 90 °, the heat transfer 
becomes dominated by conduction and the flow field 
is confined to almost half  of  the enclosure adjacent to 
the right wall. J ~ t m a x ]  for increasing ~o from 30 to 150 ° 
in Fig. 9 were 164.873, 131.383, 10.941, 7.754, respec- 
tively. Comparison of  Figs. 8 and 9 shows that, for 
the same inclination angle, the strength of  convection 
is reduced when the enclosure is elongated. 

Heat  transfer as a function of  inclination angle for 
two aspect ratios presented in Fig. 10 is seen to pro- 
duce the observations made in Figs. 8 and 9. Nu = 1 
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0.401) and (e) ~o = 150°; ~kmax = 12.15(0.83, 0.889). 
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for ~o = 180 ° (conduction regime) and it increases with 
decreasing inclinatJLon, as the heat transfer becomes 
dominated by nat~ral convection. Nu passes from a 
maximum for 8 0 ° <  tp < 90 °, an observation made 
also for the laminar case with a square cavity without 
a bounding wall [1"7] and with a bounding wall [3]. It 
is seen that, for ~0 > 90 °, the convection is less violent 
in elongated enclosures, as observed in Figs. 8 and 9. 

NUloc along the left wall for various inclination 
angles is shown in Fig. 11 for the case of Ra = 10 ~°, 
A = 1 and kr --- 10 Generally, Nu~o~ is an increasing 
function of tp, when it is varied from 30 to 90 °, and it 
is dominated by the conduction regime when ~o > 120 °. 
It is observed that Nu~oc passes from a maximum, the 
extremum of which shifting to lower y for increasing 

inclination angle, obviously due to shifting gravity 
direction in the enclosure. 

It should be noted that, in turbulent  flow, at any 
inclination angle smaller than q~ = 90 ° the flow is dis- 
torted whereas in laminar flow this was noticed only 
at angles near 60 ° [3]. Also, the dependency of Nu on 
the aspect ratio is less evident in turbulent flow than 
in laminar and it appears that the heat transfer rate 
decreases with A. Similar trends are found in laminar 
flow for this range of A considered in this study [16]. 

Heat transfer correlation 
Heat transfer correlations, Nu as a function of the 

Rayleigh number,  Ra, the aspect ratio, A, conductivity 
ratio, kr, wall thickness, W and inclination angle, ~o, 
were derived based on functional forms 

Nu~ = 90 = aRa bA'ka W e (15) 

Nu~ = Nu~ = 90 (sin ~o)r (16) 

where the coefficients a to f are determined by using 
a least square technique as a = 0.1307, b = 0.1, 
c = - 1 / 9 ,  d = 0 . 7 5 ,  e = - 0 . 7 5 ;  f = - 0 . 0 1  for 
0 °~<~o~<90 ° and f = 6,0 for 90 °<~o~< 180 ° . 

The limits of the correlation are 108 ~< Ra <~ 1012, 
0.5<~A<~l, 1 ~<kr~< 10, 0~< W~<0.5 and 
0 ° ~< ¢p ~< 180 °. The correlation coefficient, R, was 
0.9754 for equation (15) and 0.9524 for 0 ~< ~o ~< 90 ° 
and 0.9554 for 90 ° < ~o ~< 180 ° in equation (16). 

The correlations with equation (16) for the two 
regions of q~ are presented in Fig. 12(a) and (b). It is 
seen that the effect of  Ra is negligible, particularly for 
low kr and high W as is evident from Figs. 5 and 6. 
As expected, the effects of kr and W are similar and 
inverse. As equation (16) shows, the effect of  the 
inclination angle, ~o, is different for the two regions. 
It is noted that, for many applications in the build- 
ing industry and passive solar energy utilization, 
60 ° ~< ~o ~< 120 °. 

Remarks on turbulence 
The flow is mainly divided into two principal 

regions : a region where the fluid is stagnant and strati- 
fied in the core, and the other near the heated and 
cooled walls where the effective viscosity is larger then 
unity and a boundary  layer type of flow is developed. 
The boundary  layer type of flow is shown in Fig. 13 
for Ra = 1012. It is seen that the velocity gradient near 
the wall is very high. The boundary  layer develops 
early near the bot tom of the heated side and reaches 
a maximum at about  half the height of the cavity. 
Evidently, the boundary layer cannot  be completely 
turbulent since it is observed in Fig. 14 that isolines 
of the turbulent  viscosity show that fit is more im- 
portant  in the second half of the cavity. This suggests 
that a critical distance Y,r exists beyond which the flow 
is turbulent [18]. The flow is re-laminarized at the 
end of the vertical wall to join the horizontal stream 
parallel to the adiabatic plane. The transition from 
laminar to turbulent regime at the bot tom of the 
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heated  wall is no t  clearly defined, as was also observed 
for the case of  a differentially heated  enclosure [6]. 

Figure 15 shows direct re lat ionships between 
and  Ra, a n d / h  and  Ra near  the heated  wall. Both/~t 
and  • have similar behav iour  with  increasing Ra. For  
Ra = 10 ]2, the dissipat ion rate of  the tu rbu len t  energy 
becomes impor t an t  near  the walls, as p= is influenced 
by ~: 

K 2 

~t = c ~ - - .  (17) 

CONCLUSIONS 

Turbulent  natural  convect ion in enclosures bounded  
by a solid wall has been studied. Two-dimens ional  
equat ions  of  conservat ion  of  mass, m o m e n t u m  and  
energy, with  the Boussinesq approximat ion ,  have been 
solved using a finite difference method.  The  x-e model  
is used for turbulence.  Govern ing  parameters  were 
108~<Ra~<1012, l ~ < k r ~ < 1 0 ,  0 ~ < W ~ < 0 . 5 ,  0.5~< 
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Fig. 14. Isolines of turbulent viscosity for (a) Ra = 10 ~°, (b) Ra = 1012. 
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Fig. 15. Profiles of turbulent viscosity and of kinetic energy of turbulence near the heated side of the cavity 
for various Rayleigh numbers. 
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A~< 1 and  0~<~o~< 180 ° . The results showed tha t  
(1) heat  t ransfer  is an  increasing funct ion of  the 
Rayleigh n u m b e r  and of  the wall conduct ivi ty  rat io  
(it is a weak funct ion of  the enclosure aspect rat io) ; 
(2) it is a decreasing funct ion of  the wall thickness ; 
(3) heat  t ransfer  has  a m a x i m u m  for an  incl inat ion 
angle of  80-90 ° and  (4) these t rends are amplified at  
high Rayleigh numbers ,  a t  high wall conduct ivi ty  and  
at small  wall thickness. 
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